تعیین مناسب ترین اندازه کرت آزمایشی برای آزمایش‌های بهنزادی چغندرقند

Determination of optimum plot size for sugar beet breeding experiments

حسن ابراهیمی‌کولاتی و محمد رضا میرزائی

چکیده

در برنامه‌های اصلاحی و ارزیابی چغندرقند اندازه‌های مختلف کرت توسط محلیون استفاده می‌شود که به نظر می‌رسد اغلب آنها بر اساس تجربه بوده و معیار علمی لحاظ نشده‌اند. در تحقیق‌های اندام‌سنگی کرت بر دو محدودت افزایش هزینه و کاهش دقت آزمایش وجود دارد. در این تحقیق سعی کرده‌ایم بر اساس معیار ضریب تغییرات اندازه‌گیری کرتی انتخاب کرت که ضمن کاهش هزینه‌ها جرای آزمایش، دقت قابل اعتقادی نیز داشته باشد. در این بررسی به صورت کرت های یک بار خرد شده در قالب بلوک‌های کاملاً تصادفی با استفاده از یک رکم بردار چغندرقند به سمت دو سال (25-73) در همدان به اجرای در آمد که در آن طول خط در چهار سطح بعنوان عامل اصلی و عرض کرت در چهار سطح بعنوان عامل فرعی در نظر گرفته شد. پس از اینکه نتایج تجزیه و ارائه‌سایر صفات محصول رتبه‌ی محصول قند حاصل قند سفیدی درصد قند سفید نشان داد که اثرات اصلی و اثرات متقابل (در واحد سطح) معنی دار نشدند. اندازه‌های مختلف کرت بر مبنای ضریب تغییرات این صفات با یکنواخت مقایسه شدند. بر اساس این مقایسه‌ها، کرت به طول هشت متر و عرض دو خط (1/6 متر مربع) حداکثر ضریب تغییرات را داشته و مناسب ترین اندازه کرت برای آزمایش‌های به نزادی چغندر قند در مناطق مشابه همدان بیشتری قدردی.

E-mail: H-koulai@areeo.or.ir (OR koulili@yahoo.com)

E-mail: m_r_mir@yahoo.com
واژه‌های کلیدی: چغندرقبد، اندام‌زه کرت و ضریب تغییرات

مقدمه

دو محدودیت مشخص در انتخاب اندام‌زه مناسب کرت وجود دارد که افزایش هزینه آزمایش در صورت انتخاب کرت بزرگتر و کاهش دقت آزمایش در صورت انتخاب کرت کوچکتر می‌باشد. هر چند کاهش اندام‌زه کرت موجب کاهش هزینه اجرای آزمایش خواهد شد اما این کاهش هزینه نیازمند منجر به افزایش صرف‌های پذیرش است. این آزمایش گردیده‌اند. هدف از این تحقیق، یافتن طول و عرض مناسبی که انتخاب کرت است که بر اساس آن ضمن کاهش هزینه اجرای آزمایش کرت چغندرقبد، اشتتیاب آزمایشی نیز کاهش یابد.

در بررسی‌های مختلف، اندام‌های مختلفی از اندام‌زه کرت گزارش شده است. ایگر و همکاران (1980) اندام‌های مناسب کرت آزمایش‌های سیبزمینی را سه رده با طول ده متر گزارش نمودند. در تحقیق و شرایط دیگر (Cordeiro et al. 1982) اندام‌های مناسب کرت آزمایش‌های
سیب‌زمینی را 16 ردیف با فاصله 20 سانتی‌متر بین رديف‌ها و فاصله 80 سانتی‌متر بین بوته‌ها پیش‌نهاد کردند. همچنین زیرمن (1982 (Zimmermann) با توجه به همبستگی بین ضریب تغییرات و تعداد کرت (تعداد واحدی)، انتخاب مناسب کرت در آزمایش‌های مخلوط لوییا قرمز و ذرت را سه در شش متر پیش‌نهاد کرده است.

سیرینی واسان و همکاران (1982 (Srinivasan et al. گزارش نمودند که با افزایش اندامه کرت ضریب تغییرات کاهش یافته و کرت‌های مستطیلی نسبت به کرت‌های مستطیلی ضریب تغییرات کمتری دارند، بنابراین اساس انتخاب مناسب کرت را مناسب با نسبت هزینه از پنجه تا ۹۰ متر مربع توصیه کردند.

خیورانی و همکاران (1992 (Khurana et al. گیاهت تعیین اندازه و شکل مناسب کرت، یک رقم سویا را در زمینی به ابعاد 50×50 متر کشت و آن را به واحدهای پایه به ابعاد 50×50 متر و فاصله 20 سانتی‌متر بین رديف ها تقسمیم و هر یک از این واحدها را با واحدهای همسانی در دو جهت شمال-جنوب و شرق-غرب ترکیب نمودند. آنها نتیجه گرفتند که با افزایش اندازه کرت ضریب تغییرات کاهش می‌یابد و وقتی تغییرات خاک زیاد می‌شود، با افزایش اندازه کرت کارآمد نسبی‌کاهش می‌یابد.

لوکاس (1981 (Lucas) انتخاب مناسب کرت را برای تعداد غواصی پنجه در کرت‌های با حاشیه و بدون حاشیه به ترتیب 2/72 و 2/59/2 متر مربع و برای محصول بذر پنجه 2/72/72 و 2/59/2 متر مربع بی‌آورد نمود.

سینگ (1989 (Singh) جهت تعیین اندازه مناسب کرت در یک زمینی یکنواخت یک رقم کم را در 30 ردیف و در هر ردیف 24 بوته (8×122.5متر) مورد مطالعه قرار داد. وی هر بوته را جداگانه برداشت و محصول بوته‌های همسانی را با هم ترکیب نمود تا اندازه و شکل‌های مختلف کرت بسته آید. نهایتاً اندازه مناسب کرت را پنجه تا 7/5 متر مربع بی‌آورد نمود.

ایگر و همکاران (1991 (Igga et al. یک قطعه در مزرعه آزمایشی نیشکر را به کرت‌های دو در یک و نیم متر تقسیم و جهت تعیین اندازه مناسب کرت، 55 اندازه
مختلف کرت را شیبی سازی نموده و نتیجه گرفتند که تنها کرت هایی کوچکتر از ۹۴ متر مربع و دارای خاک همکن قابل استفاده در محاسبه مستند و از بین آنها کرت هایی شش تا دوازده متر مربع بیشترین کاهش را در ضریب تغییرات دارند و کرت های بزرگتر از ۷۴ متر مربع به خط ناامنگی خاک ما قابل استفاده نیستند. همچنین تغییرات در طول کرت نسبت به تغییرات در عرض کرت اثر بیشتری در کاهش ضریب تغییرات دارد.

جهت تعیین اندازه مناسب کرت یک رقم باقلا را در قطعه زمین آزمایشی کشت و ضریب تغییرات اندازه های مختلف کرت را به عنوان مقياس تغییرات آزمایشی در نظر گرفتند. داده های بدست آمده را با مدل‌های توان دوم، ریشه دوم و سطح مچری‌بخشی که ضریب تغییرات تابعی از طول و عرض کرت بود، تجزیه آماری نمودند و اندازه مناسب کرت ۱۲/۷۰ متر مربع برآورد کردند.

پاوجا و همکاران (1981) نه واریتی نخود را در کرت هایی با ۱۲ خط به طول ۱۲ متر به صورت طرح بلولک های کامل تصادفی کشت نمودند. هنگام برداشت واحدهای دو خطی به طول یک متر را جداگانه برداشت و ضریب تغییرات اندازه های مختلف کرت را که از ترکیب تعداد مختلف واحدها به وجود آمده بودند محاسبه و نتیجه گرفتن کرت هایی که باعث بهبود پنج در یک و هشتم دهم متر بیشترین دقت را دارند.

مواد و روش‌ها

این بررسی در سال های ۱۹۷۴ و ۱۹۷۵ در ایستگاه اکباتان مرکز تحقیقات کشاورزی همدان به صورت آزمایش کرت های یکبار خرد شده در قالب طرح پایه بلولک های کامل تصادفی با استفاده از بذر یل زرد چغندر قند رقم IC در چهار تکرار اجراء گردید. در این آزمایش طول و عرض های مختلف کرت چهار هر سطح بررسی قرار گرفت. عامل اصلی (A) طول کرت در چهار سطح (A34) به ترتیب چهار، شش،
۶۷۹

جمهوری اسلامی ایران

۷۸۴

همچنین تجزیه واریانس این داده‌ها نشان داد که اختلاف عملکرد تیمار‌ها معنی‌دار نبود.
بنابراین چون توزیع داده ها نرمال، اختلاف عملکرد تیمار ها غير معنی دار و زمین آزمایش یکجا و خامبوده است. ضریب تغییرات اثرات اصلی و اثری متقابل برای هر صفت به روش معمول و با استفاده از برنامه آی کی به همین منظور نوشته شد. محاسبه کردن و تیمارها بر اساس ضریب تغییرات صفات با یکدیگر مقایسه شدند. در پایان بر اساس نقطه تعادل حداکثر ضریب تغییرات بیشتر صفت بالا اندمازه مناسب کرتن توصیه شد.

نتیجه گیری و بهث نتایج تجزیه واریانس نشان داد که سطوح عامل اصلی (طول خط) و سطوح عامل افزایش (تعداد خط) و اثرات متقابل آنها از نظر محصول ریسه، محصول قند و محصول قند سفید در واحد سطح تعیین در هکتار و همچنین درصد قند و درصد قند سفید تفاوت معنی داری با یکدیگر دارند. (جدول 1).

جدول 1- جدول تجزیه واریانس صفات مهم اندازه گیری شده - همدان 1376-1374

<table>
<thead>
<tr>
<th>موانع (S.O.V)</th>
<th>df</th>
<th>منابع</th>
<th>MS (RY)</th>
<th>MS (SY)</th>
<th>MS (WSY)</th>
<th>MS (SC)</th>
<th>MS (WSC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(length) طول کرت</td>
<td>3</td>
<td>184.05<sup>ns</sup></td>
<td>4.81<sup>ns</sup></td>
<td>3.27<sup>ns</sup></td>
<td>0.21<sup>ns</sup></td>
<td>0.12<sup>ns</sup></td>
<td></td>
</tr>
<tr>
<td>(width) عرض کرت</td>
<td>3</td>
<td>54.81<sup>ns</sup></td>
<td>1.57<sup>ns</sup></td>
<td>1.19<sup>ns</sup></td>
<td>1.00<sup>ns</sup></td>
<td>1.76<sup>ns</sup></td>
<td></td>
</tr>
<tr>
<td>(L x W) طول عرض</td>
<td>9</td>
<td>10.65<sup>ns</sup></td>
<td>0.22<sup>ns</sup></td>
<td>0.15<sup>ns</sup></td>
<td>1.02<sup>ns</sup></td>
<td>1.19<sup>ns</sup></td>
<td></td>
</tr>
</tbody>
</table>

ns غیر معنی دار

بنابراین با توجه به نرمال بودن توزیع داده ها، عدم وجود اختلاف بین میانگین تیمار ها و یکنواختی تقریبی زمین آزمایش، اندازه‌های مختلف کرت بر اساس ضریب تغییرات با یکدیگر مقایسه شدند.
هشت تیمار از شانزده تیمار مورد بررسی در این طرح دو به دو مساحی به‌کارگیری گردیده و بر اساس مقایسه این تیمارها نشان داد که افزایش طول کرت نسبت به عرض کرت اثر بیشتری در کاکش ضریب تغییرات داشته است. به عبارت دیگر، با افزایش عرض کرت اثرات مثبتی در کرت در مقدارت داشته و با تغییرات ضریب تغییرات کمتری داشته است. به‌طوری که طول کرت باید متغیر باشد (Srinivasan et al. 1982) و در صورتی که کاکش اندانزه کرت با تغییر طول کرت به‌صورت خاصی باشد، عدم تغییر در طول کرت و به‌لطف کرت را کاکشی داده و حتی ممکن است تغییر در طول کرت به‌خاطر تغییر در طول کرت باشد (Igou et al. 1991).

جدول 2 ضریب تغییرات صفات اندازه‌گیری شده چندان قند در کرت های مساوی

Table 2 Coefficient of variation of important traits of sugar beet in equal size plots

<table>
<thead>
<tr>
<th>Trait (جنسیت)</th>
<th>(plot size)</th>
<th>4.8 m²</th>
<th>7.2 m²</th>
<th>9.6 m²</th>
<th>14.4 m²</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>a₁b₂</td>
<td>a₁b₁</td>
<td>a₁b₃</td>
<td>a₂b₂</td>
<td>a₂b₁</td>
</tr>
<tr>
<td>RY</td>
<td>25.23</td>
<td>17.36</td>
<td>15.89</td>
<td>16.78</td>
<td>12.25</td>
</tr>
<tr>
<td>SY</td>
<td>31.56</td>
<td>15.99</td>
<td>23.99</td>
<td>20.41</td>
<td>20.36</td>
</tr>
<tr>
<td>WSY</td>
<td>3.28</td>
<td>15.58</td>
<td>27.55</td>
<td>22.12</td>
<td>23.85</td>
</tr>
<tr>
<td>SC</td>
<td>9.23</td>
<td>4.01</td>
<td>12.05</td>
<td>10.52</td>
<td>9.8</td>
</tr>
<tr>
<td>WSC</td>
<td>11.73</td>
<td>5.62</td>
<td>16.41</td>
<td>13.75</td>
<td>13.29</td>
</tr>
</tbody>
</table>
شکل ۱- مقادیر ضریب تغییرات در سطوح مختلف طول کرت

Fig.1 Coefficient of variation value for plot length

برای عامل فروریود (عرض کرت)، حداقل ضریب تغییرات را تیمار ۴b برای صفات محصول ریشه (۲۲/۳۴/۲۲)، محصول قند (۲۵/۳۵/۲۰) و محصول قندسیفت (۲۷/۸۸/۲) (شکل ۲ محور سمت چپ) تیمار ۲b برای صفات درصد قند (۴۲/۴۰/۴) و درصد قندسیفت (۹/۸/۹) (شکل ۲ محور سمت راست) داشتند.

شکل ۲- مقادیر ضریب تغییرات در سطوح مختلف عرض کرت

Fig.2 Coefficient of variation value for plot wide
شکل ۳- مقایسه ضرایب تغییرات در سطوح مختلف طول و عرض کرت

Fig. 3 Coefficient of variation value for plot length and wide

همچنین بر اساس محاسبات انجام شده برای اثر متقابل مساحت کرت(طول کرت در عرض کرت)، حداقل ضریب تغییرات RA تیمار a3b2 برای صفات درصد قند (3/2/16 و درصد قندسفید (8/7/4 (شکل ۲ محور سمت راست) و تیمار a3b3 برای صفت محصول ریشه (17/11 و تیمار a3b4 برای صفات محصول قند (9/7/16) و محصول قندسفید (8/7/4 (شکل ۳ محور سمت چپ) داشتند.

نتایج بالا نشان داد که تیمار a3b2 باعث افزایش کرت با دو خط کاشت به طول هشت متر و مساحت ۹/۶ متر مربع حداقل ضریب تغییرات RA برای درصد قند و درصد قندسفید داشته و اختلاف اکستروفی با تیمارهای دارای حداکثر ضریب تغییرات از نظر صفات محصول ریشه (17/16 درصد) و محصول قند (23/16 درصد) داشته است. این در حالی است که انتخاب تیمار a3b2 در مقایسه با تیمارهای فوق کاهش قابل توجه آناتوژ اثبات کرت برای صفات محصول ریشه (17/16 درصد) و محصول قندسفید (13/16 درصد) داشت.
تعين متسبرين انتذاره كرت ...

سرئيني واسان و همكاران (1982) (علام نمونودن كه با افزايش انتذاره كرت ضرير تغييرات كاشف يافت يا. م حرد 24 متري انتذاره كرت از 2.4 متري انتذاره كرت از 9.6 متري انتذاره كرت 24 متري انتذاره كرت ضرير تغييرات آزمایش نه تئها كاشف نتائج (ب جز چند مورد و به مقدار كم) بلكه افزايش نيز يافت اين روند (Kurhara et al. 1992) است كه اظهار داشتند "با افزايش انتذاره كرت ضرير تغييرات كاشف يافت اما وقتی تغييرات خاك افزايش يافت، همچنين موفق ب كى افزايش آيکو و همكاران (1991) است كه اعلام نمونودن "شنها كرت هاي كچکتري از 4 متري مربع و داراي خاك همکن قابل استفاده در محاسبه بودند و از بين آنها كرت هاي شش تا 12 متري مربع بيشترین كاشف را در ضرير تغييرات داشتند".

بنابراین با استفاده از مساحت کرت 9/6 متر مربع (2/881) در آزمایش های به نزادی به بهره كردن دقت آزمایش هزینه اجرا نيز در حد متوسط خواهد بود. با توجه به اينكه با افزايش بيشتر انتذازه كرت هزينه اجرا افزوده شده و دقت آزمایش نيز بالا نمي رود، نيازي به استفاده از انتذازه كرت بزرگتر نیست. انتذاره كرت پيشنهادي با توجه به شريعت محلي استان همدان توصيه شده است. البته امکان دارد با تغييرات شريعت فيزيكي خاك، اقليمي محل آزمایش و امكانيات موجود، انتذاره كرت ديجري مناسب باشد (1980). همچنين در صورت وجود محدوديت هاي بيشتر پيشنهاد مي شود آزمایش ها در كرت هاي به طول هشت متري و عرض 6 متري (يك خط کشت) اجرا كرده. در اين حالات ضرير تغييرات برای صفات محصول ريشه، محصول قند، محصول قند سفيد، درصد قند و درصد قند سفيد به ترتيب 37/17، 8/59، 9/65، 10/15، 8/5، 0/0 و 5/6 بوده كه به تناسب هزینه نسبت به بقيه تيمارها بجز تيمار توصيه شده دقت بيشترى دارد.

توصيه مي شود در بررسى هاى بعدى، قطعه زمين یک‌پا باران به تيمار توصيه شده و از مواد شربتى مرري دیگر دقت بيشترى دارد.

آزمایش به واحدهای پایه (مثلا يک متري مربعي) تقسيم و از تكيب هاي مختلف آنها
References

