تاثیر بیماری لکه‌برگی سرکوسپورایی بر روی رنگدانه‌های فتوسنتزی و فعالیت آنزیم‌های آنتی-اکسیدانت ارقام مختلف چغندرقند

نوع مقاله: کامل علمی - پژوهشی

نویسندگان

1 کارشناسی ارشد بیوتکنولوژی، محقق اردبیلی، اردبیل، ایران.

2 دانشیار گروه گیاهپزشکی ، دانشگاه محقق اردبیلی، اردبیل، ایران.

3 دانشیار گروه زراعت و اصلاح نباتات، دانشگاه محقق اردبیلی، اردبیل، ایران.

4 استاد گروه زراعت و اصلاح نباتات، دانشگاه محقق اردبیلی، اردبیل، ایران.

5 دانشجوی دکتری فیزیولوژی گیاهان زراعی، دانشگاه محقق اردبیلی، اردبیل، ایران.

چکیده

لکه­برگی سرکوسپورایی از مهم­ترین و شایع­ترین بیماری­های برگی در چغندرقند می­باشد که موجب ایجاد خسارت در این گیاه می­شود. این مطالعه به صورت آزمایش فاکتوریل در قالب بلوک­های کامل تصادفی در آزمایشگاه و گلخانه انجام شد. هدف این پژوهش، پیدا کردن شاخص­هایی برای تمایز بین ارقام حساس و متحمل چغندرقند به بیماری لکه­برگی سرکوسپورایی بود. فاکتورهای آزمایشی شامل 11 رقم چغندرقند و آلودگی و عدم آلودگی به بیماری لکه­برگی سرکوسپورایی بود. صفات مورد اندازه­گیری شامل رنگدانه­های اصلی فتوسنتزی (کلروفیل a، کلروفیلb، کلروفیل کل، نسبت رنگدانه­ ها)، رنگدانه­های کمکی (کارتنوئیدها، فلاونوئیدها، آنتوسیانین­ ها) و فعالیت آنزیم­های آنتی‌اکسیدانت کاتالاز، پراکسیداز و پلی­فنل­اکسیداز و اندام هوایی و وزن خشک ریشه بود. نتایج حاصل از بررسی رنگدانه­های اصلی فتوسنتز نشان داد که بیماری باعث کاهش میزان کلروفیل a و به‌تبع آن موجب کاهش کلروفیل کل می­شود. مقدار رنگدانه­های کمکی فتوسنتز به جز کارتنوئیدها با پیشرفت بیماری در گیاهان آلوده افزایش یافت. همچنین بیماری لکه­برگی­سرکوسپورایی باعث افزایش فعالیت آنزیم کاتالاز، پراکسیداز و پلی­فنل‌اکسیداز و نیز کاهش وزن خشک اندام هوایی و افزایش ریشه شد. نتایج نشان داد، رقم HI 0063 به عنوان رقم حساس، زودتر از بقیه ارقام به لکه­برگی سرکوسپورایی مبتلا گردید و کاهش وزن خشک بیشتری در برگ نسبت به بقیه ارقام داشت، همچنین وزن بوته­ ها در این رقم نسبت به سایر ارقام مورد مطالعه بالاتر بود و میزان کلروفیل a و فلاونوئیدهای برگ بیشتری داشت. میزان فعالیت آنزیم­های آنتی­اکسیدانت رقم HI 0063 نسبت به رقم متحمل بیشتر بود. رقم Yasmene به ­عنوان متحمل­ترین رقم نسبت به سایر ارقام دیرتر علایم بیماری را نشان داد و کمترین کاهش وزن خشک برگ را داشت.

کلیدواژه‌ها


عنوان مقاله [English]

Effect of Cercospora leaf spot on photosynthetic pigments and antioxidant enzymes activity of different sugar beet cultivars

نویسندگان [English]

  • zahra joudi 1
  • Mahdi Davari 2
  • Sodabeh Jahanbakhsh 3
  • Ali Ebadi 4
  • Ghasem Parmoon 5
1 Former M.Sc. Student of Biotechnology, Department of Agronomy and Plant Breeding, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran.
2 Associate Professor of Plant Pathology, Department of Plant Protection, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Iran.
3 Associate Professor of Department of Agronomy and Plant Breading, University of Mohaghegh Ardabili, Iran.
4 Professor of Department of Agronomy and Plant Breading, University of Mohaghegh Ardabili, Iran.
5 PhD student, Department of Agronomy and Plant Breading, University of Mohaghegh Ardabili, Iran.
چکیده [English]

Cercospora leaf spot is one of the most important and common leaf diseases of sugar beet which causes several damages. This study aimed to find indices to distinguish susceptible and tolerant to cercosporaleaf spot sugar beet cultivars. The experiment was conducted in a factorial design based on randomized complete block design under laboratory and greenhouse conditions. Treatments included 11 sugar beet genotypes and contamination and non-contamination to cercospara leaf spot disease treatments. Different traits such as main photosynthetic pigmants (cholorophyll a, b, total cholorophyll and pigment ratio), auxiliary pigments (carotenoids, flavonoids and anthocyanins) and antioxidant enzymes activity such as catalase, proxidase and polyphenol oxidase, and shoot and root dry weight were measured. Results of the main photosynthetic pigments evaluation showed that the disease reduced the chlorophyll a and b  and consequently total chlorophyll content. The amount of photosynthetic auxiliary pigments, except carotenoids, increased as the disease progressed in infected plants. Cercospora leaf spot increased the activity of catalase, peroxidase and polyphenol oxidase enzymes and decreased dry weight of shoot and increased root dry weight with control. Cultivar HI0063 was affected by the disease earlier than other cultivars, and had a higher dry weight loss than other cultivars; also plant weight in this cultivar was higher than other cultivars and higher level of chlorophyll a and flavonoids was seen. The level of antioxidant enzyme activity of HI0063 was higher than the tolerant cultivar. Yasmeneas cultivar as the most tolerant cultivar showed the diseases symptoms later compared with other cultivars with the lowest leaf dry wieght reduction.

کلیدواژه‌ها [English]

  • catalase
  • Chlorophyll a
  • Protein content
  • Root dry weight
  • sugar beet
Abbasi S, Alizadeh A, Mesbah M,Mohammadi Gultape A. Comparison of different methods of evaluation of resistance to Cercospora beticola in sugar beet under field, greenhouse and in vitro conditions. Journal of Applied Entomology and Phytopathology. 2002; 71(1): 1-26. (in Persian, abstract in English)

Abbasi S, Alizadeh A, Mesbah M, Banihashemi M. Evaluation of sugar beet resistance to Cercospora beticola using detached leaf disks. Journal of Sugar Beet. 2003; 19 (1):23-35.(in Persian, abstract in English)

Abbasi S, Mahmoodi SB. The reaction of sugar beet cultivars to fungal isolates causing leaf spot disease. Journal of Plant Protection Research. 2009: 33(1):71-84. (in Persian, abstract in English)

Abbasi S, Mesbah M, Mahmoudi SB. Optimization of field evaluation of resistance of sugar beet cultivars to cercospora leaf spot. Journal of Sugar Beet. 2002; 18(1):81-91.(in Persian, abstract in English)

Aghaeizadeh M, Vahedi S, Fathi MR, Orazizadeh MR, Babaee B. Identification of tetraploid pollinator resistant to leaf spot disease and bolting in sugar beet. Journal of Sugar Beet. 2015; 30(2): 67-71.

Bakhshi khaniki G, Javadi S, Mehdikhani P, Tahmasebi D. Investigation of drought stress effects on some quantity and quality characteristics of new eugenics sugar beet genotypes. New Cellular and Molecular Biotechnology Journal. 2011; 1 (3) :65-74. (in Persian, abstract in English)

Bakhshi M, Arzanlou M, Babai-Ahari A. Comprehensive check list of Cercosporoid fungi from. Iranian Journal of Plant Pathology and Quarantine. 2012; 2:44–55.

Bolton MD, Thomma BPHJ. The complexity of nitrogen metabolism and nitrogen-regulated gene expression in plant pathogenic fungi. Physiolo. Molecular Plant Pathology. 2008; 72:104-110.

Bradford MMA. rapid and sensitive method for quantitation of microgram of protein utilizing the principle of protein-dye binding. Analytical Biochemistry Quantities. 1976; 72: 248-254.

Cao J, Jiang W, He H. Induced resistance in Yali Pear (Pyrus bretschneideri Rehd) fruit against infection by Penicillium expansum by postharvest infiltration of Acibenzolar- S-methyl. Journal of Phytopathology. 2005; 153: 640- 646.

Chance B, Maehly AC. Assay of catalases and peroxidases. Methods in Enzymology. 1955; 11: 764-755.

Constabel CP, Bergey DR, Ryan CA. Polyphenol oxidase as a component of the inducible defense response in tomato against herbivores. In phytochemical Divercity and Redundancy in Ecological Interactions. Eds Romeo JT, Saunders JA, Plenum Press, New York. 1996. pp. 231-252.

Crous PW, Braun U. Mycosphaerella and its anamorphs: 1. Names published in Cercospora and Passalora. CBS, Utrecht. 2003. pp .571.

Draycott AP. Sugar Beet. Blackwell Publishing. Suffolk, United Kingdom. 2006. pp. 475.

Heim D, Nicholson RL, Pascholati SF, Hagerman AE,  Billet W. Etiolated maize mesocotyls: A tool for investigating disease interactions. Journal of Phytopathology. 1983; 73: 424-428.

Hipskind J, Woodand K, Nicholson RL. Localized stimulation of anthocyanin accumulation and delineation of pathogen ingress in maize genetically resistant to Bipolaris maydis Race O. Physiological and Molecular Plant Pathology. 1996; 49: 247-256.

Holtschulte B. Cercospora beticola worldwide distribution and incidence. In: Asher MJC, Holtschulte B, Richard Molard M, Rosso F, Steinrücken G and Beckers R (eds.) Cercospora beticola Sacc. biology, agronomic influence and control measures in sugarbeet. 2000. pp. 5-16. 

Kar M, Mishra D. Catalase, peroxidase and polyphenol oxidase activity during rice leaf senescence. Plant Physiology. 1976; 57: 315-319.

Karaoglandis GS, Thanassoulopolus CC, Ioannidis PM. Fitness of Cercospora beticola field isolate-resistant and sensitive- to demethylation inhibitior fungicides. European Journal of Plant Pathology. 2001; 107: 337-347.

Kelber E. Multivariate models for the estimation of yield losses in sugar beet due to Cercospora beticola. Z. Pflanzenkrankh. Pflanzenschutz. 1977; 84: 174 -186.

Keyhani J, Keyhani E, Kamali J. Thermal Stability of Catalases Active in Dormant Saffron (Crocus sativus L.) Corms. Molecular Biology Reports. 2002; 29: 125-128.

Khazay F, Etebarian H, Rostamy A, Alizade A. Study change proxidase enzyme and total phenol on yellow genotypes apple fruit treated with Penicillium expansum and Penicillium expansum. Seed and Plant Production. 2010; 2(4): 419-433. (in Persian, abstract in English).

Koch G, Jung C. Genetic location of Cercospora resistance genes. In: Cercospora beticola Sacc. Biology, agronomic influence and control measures in sugar beet, Vol 2, ed Asher MIC, Holtschulte B, Richard Molard M, Rosso F, Steinruken G, Beckers R. 2000. pp. 197- 210

Krizek DT, Britz SJ, Mirecki RM. Inhibitory effects of ambient levels ofsolar UV-A and UV-B radiation on growth of, New Red Fire Lettuce. Journal of Plant Physiology. 1998; 103:1-7.

Lobato AKS, Gonc MC, alves-Vidigal PS, Vidigal Filho CAB, Andrade Kvitschal Bonato CM. Relationships between leaf pigments and photosynthesis in common bean plants infected by anthracnose. New Zealand Journal of Crop and Horticultural Science. 2010; 38(1): 29-37.

Madaniyan Mohammadi R, Minasian V, Safai N, Mahmoudi SB, Sharifi H. Modeling of disease progress in Cercospora leaf spot of sugar beet. Iranian Journal of Plant Pathology. 2004; 40(3-4): 327-343. (in Persian, abstract in English).

Magbanua ZV, Moraes CMD, Brooks TD, Williams WP, Luthe DS. Is Catalase Activity One of the Factors Associated with Maize Resistance to Aspergillus flavus? Molecular Plant-Microbe Interactions. 2007; 20(6):697–706.

Mahajan S, Tuteja N. Cold, salinity and drought stresses: an overview. Archives Biochem. Bioph. 2005; 444: 139-158.

Mayer AM. Polyphenol oxidases in plants and fungi: going places? A review. Phytochemistry. 2006; 67:2318-2331.

Mohammadi M, Kazemi H. Changes in peroxidase and polyphenol oxidase activities in susceptible and resistant wheat heads inoculated with Fusarium graminearum and induced resistance. Plant Science. 2002; 162: 491-498.

Mohanty N. Photosynthetic characteristics and enzymatic antioxidant capacity of flag leaf and the grain yield in two cultivars of Triticum aestivum L. exposed to warmer growth conditions. Journal of Plant Pathology. 2003; 160:71-74.

Niazian M, Amiri R, Rajabi A, O'zashi Zadeh MR. Evaluation of resistance to Cercospora left spot disease in some lines and hybrids of sugar beet under natural infection in khuzestan province. Iranian Journal of Plant Pathology. 2012; 50(1): 95-98. (in Persian, abstract in English)

Ogallo JL, McClure MA. Systemic acquired resistance and susceptibility to root-knot nematode in tomato. Journal of Phytopathology. 1996; 86: 498-501.

Omranizade F, Sahebani N, Aminian H. Investigating the activity of peroxidase and polyphenol oxidase in contaminated cucumbers to the root canal generating nematode Meloidogyne javanica and the mushroom is the cause of the swollen wilting of tomatoes Fusariumoxysporum f.sp. lycopersici. Iranian Journal of Plant Protection Science. 2011; 42(2): 315-323.( in Persian, abstract in English)

Posmyk MM, Kontek R, Janas KM. Effect of anthocyanin-rich red cabbage extract on cytological injury induced by copper stress in plant and animal tissues. Environ. Protection Natural Sources. 2007; 33: 50-56.

Sari E, Etebarian HR, Aminian H. The effects of Bacillus pumilus, isolated from wheat rhizosphere, on resistance in wheat seedling roots against the Take-all fungus, Gaeumannomyces graminis var. tritici. Journal of Phytopathology. 2007; 155: 720-727.

Scarpari LM, Meinhardt LW, Mazzafera P, Pomella AWV, Schiavinato MA, Cascardo JCM, Pereira GAG. Biochemical changes during the development of witches broom: the most important disease of cocoa in Brazil caused by Crinipellis perniciosa. Journal of Experimental Botany. 2005; 56: 865-877.

Shane WW, Teng PS. Impact of Cercospora leaf spot on root weight, sugar yield and purity of Beta vulgaris. Plant Disease. 1992; 76: 812-820.

Skorzynska-Polit E, Drazkiewicz M, Wianowska D, Maksymiec W, Dawidowicz AL Tukiendorf A. The influence of heavy metal stress on the level of some flavonols in the primary leaves of Phaseolus coccineus. Acta Physiologiae Plantarum. 2004; 26(3): 247- 253.

Smith GA, Rupple EG. Cercospora leaf spot as a prediosposing factor in storage rot of sugar beet roots. Journal of Phytopathology. 1971; 61:1485-1487.

Sohrabi M, Mohammadi, H, Mohammadi AH. Effect two mycorrhizal fungi Glomus mosseae and Glomus intraradices on Disease Root of Chickpea with the agent Fusarium solani f.sp. pisi in greenhouse conditions. Biologic control of pests and plant disease. 2013; 2(2):129-137.( in Persian, abstract in English)

Sudhakar C, Lakshmi A, Giridara kumar S. changes in the antioxidant enzyme efficacyin two high yielding genotypes of mulberry (Mours alba L.) under NaCl salinity. Plant Science. 2001; 167: 613-619.

Turkan  I, Bor M, Ozdemir F, Koca H. Differential responses of lipid peroxidation and antioxidants in the leaves of drought - tolerant P. acutifolius Gray and drought-sensitive P. vulgaris L. subjected to polyethylene glycol  mediated water stress. Plant Science. 2005; 168: 223-231.

Tyagi M, Kayastha A, Sinha M. B, The role of peroxidase and polyphenol oxidase isozymes in wheat resistance to Alternaria triticina. Biophysical Journal. 2000; 43:559-562.

Wagner GJ. Content and vacuole/extravacuole distribution of neutral sugars, free amino acids and anthocyanins in protoplasts.  Journal of Plant Physiology. 1979; 64: 88-93.

Weiland J, Koch G. Sugarbeet leaf spot  disease  (Cercospora beticola Sacc.). Molecular Plant Pathology. 2004; 5: 157-166.

Yildirim O, Aras S, Ergul A. Response of Antioxidant System to Short-term NaCl stress in Grapevine root stock-1616c & Vitis vinifera L. cv. Razaki. Acta Biologica Cracoviensia. 2004; 46:151-158.